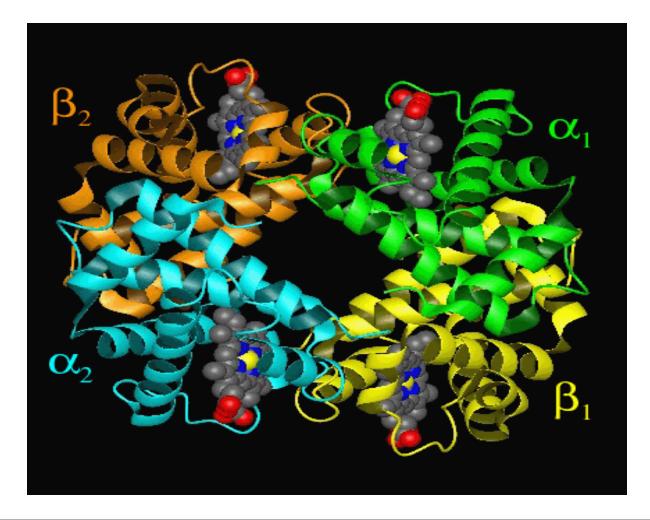
Laboratory Diagnosis of Hemoglobinopathies and Thalassemia

Archana M Agarwal, MD

Medical Director, Hematopathology and RBC Laboratory ARUP Laboratories Assistant Professor of Pathology University of Utah Department of Pathology

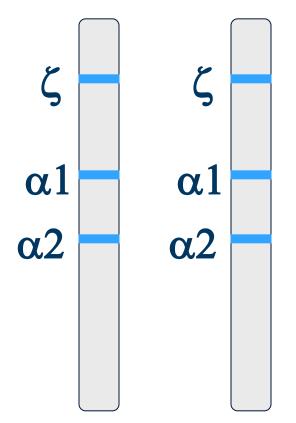
Learning Objectives

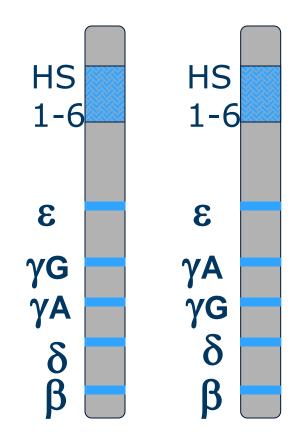
- Understand the pathophysiology of hemoglobinopathies
- Recognize the most important expected test results in hemoglobinopathies and thalassemias
- Understand different testing methodologies
- To be able to direct ordering physician to appropriate tests for these disorders


Hemoglobin (Heme+Globin)

- Hemoglobin is a tetramer composed of 4 globin molecules; 2 alpha globins and 2 beta globins or beta like globins
- The alpha globin chain is composed of 141 amino acids and the beta globin chain is composed of 146 amino acids
- Each globin chain also contains one heme molecule

Ribbon Diagram of Hemoglobin

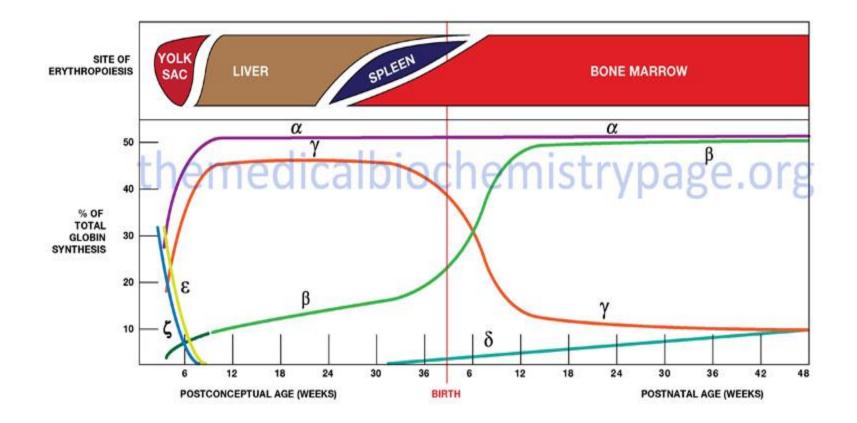




Genetics of Globin Genes

Chromosome 16

Chromosome 11



Hemoglobin-Development Switching

Normal Adult Human Hemoglobin Composition

Hemoglobin	Structure	% of Normal Adult Hb
Hb A	a ₂ β ₂	>96%
Hb A2	a ₂ δ ₂	~2.5%
Hb F	a ₂ γ ₂	<1%

Hemoglobinopathy (structural)

- Due to mutations in either alpha or beta globin
- **Structural** substitution, addition or deletion of one or more AAs in the globin chain
 - i.e HbS, HbC, HbE, HbD, HbO, etc...
- Over 1000 identified
 - Majority are benign & discovered incidentally
 - Pathogenic mutations can cause
 - Change in physical properties (sickling, crystalizes)
 - Globin instability (Heinz body formation, lower expression)
 - Altered oxygen affinity

Thalassemia (quantitative)

- A quantitative decrease in the production of alpha or beta globin chain
 - Large deletions, point mutations, small insertion/deletion that leads to decreased transcription or an unstable transcript
- Beta thalassemia results from mutations in beta gene(s)
 - Pathogenesis a result of the *free alpha subunits*
 - Two classes: β0 and β+
- Alpha thalassemia results from large deletions in the alpha gene(s)
 - Pathogenesis a result of the free beta subunits

Demographics: Thalassemias

 Found most frequently in the Mediterranean, Africa, Western and Southeast Asia, India and Burma

• Distribution parallels that of *Plasmodium falciparum*

Classification & Terminology: Alpha Thalassemia

- Normal
- Silent carrier
- Minor /trait - α /- α

- Hb H disease --/- α
- Barts hydrops fetalis

αα/αα

 $-\alpha/\alpha\alpha$

 $--/\alpha\alpha$

__/__

Clinical Presentations of Alpha Thalassemia

- A single deletion (α-thalassemia minor)
 - silent carrier state
 - RBC morphology and hemoglobin concentrations are usually normal
- **<u>Two</u>** gene deletion (α -thalassemia minor)
 - Mild microcytic anemia
- Three gene deletion (hemoglobin H disease)
 - Precipitated β chains—Hb H
 - Patients have moderate anemia, marked microcytosis, splenomegaly, and bone marrow erythroid hyperplasia
- **Four** gene deletion (Hydrops fetalis)
 - Not compatible with life (barring very early intervention)
 - Hemoglobin is primarily comprised of γ4 (Bart's), which has a very high affinity for O2 and is a poor oxygen transporter

Classification & Terminology: Beta Thalassemia

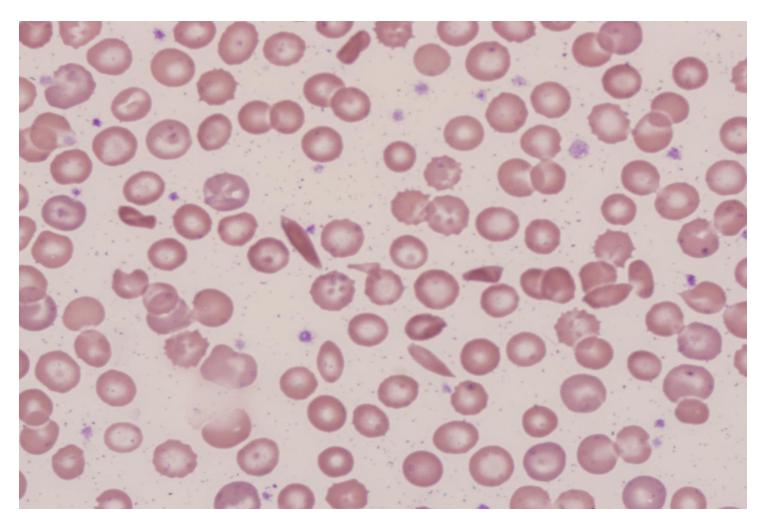
- Normal β/β
- Minor / trait β/β^0

- Intermedia
- Major

β/β+ β⁰/β+ β⁰/β⁰ β+/β+

Clinical Significance of β Thalassemia

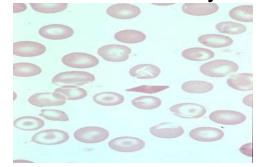
- Heterozygous asymptomatic
- Homozygous β^0 is a severe disorder associated with transfusion dependent hemolytic anemia
- Homozygous β^+ is a heterogenous disorder
 - severity depending on mutation and % of HbA
 - Increased HbA = decreased severity


Sickle Cell Anemia

- Single nucleotide base change codes for valine instead of glutamic acid at the 6th position from the N-terminus of the ß-globin chain
- Affects the shape and deformability of the red blood cell
- Leads to veno-occlusive disease and hemolysis

Peripheral Smear: Sickle Cell Anemia

Hb E


- 2nd most prevalent hemoglobin variant
 - 30,000,000 world wide
 - 80% in Southeast Asia
- Hb E trait: microcytosis (mean MCV=65fl). No anemia
- Hb E disease: MCV =55-65fl with minimal anemia
- *On HPLC has similar migration pattern as Hb A2

Hb C

- Mutation in β -globin gene β (6glu->lys)
- Seen predominantly in blacks: Gene prevalence in US black population is 2 to 3%
- May confer malaria resistance
- Often asymptomatic, mild anemia, splenomegaly
- Blood smear shows many target cells, rare intracellular crystals
- Hb S/C disease causes moderate to severe anemia and hemolysis

Diagnosis

Indications for Testing

- Hemolytic anemia; family history of hemoglobinopathy

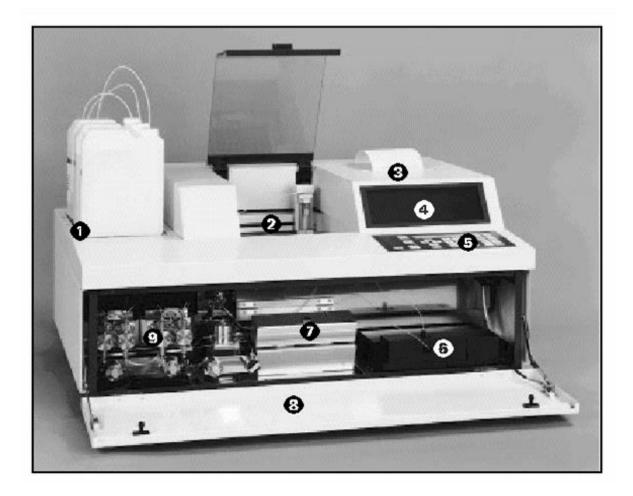
Laboratory Testing

- Initial testing CBC with peripheral smear
- Polychromasia, spherocytes, schistocytes, sickle cells, Heinz bodies, basophilic stippling; however, the lack of any of these cells does not rule out hemolytic anemia
- Many hemoglobinopathies can be diagnosed using electrophoretic or high performance liquid chromatography (HPLC) techniques, but some may be missed
- Genetic testing

Importance of CBC

- Thalassemias
 - Red cell indices are critical to diagnosis
 - Hypochromic microcytic anemia
 - MCV (mean corpuscular volume or size of the cell) is key
 - RDW (red cell distribution width) changes are variable
 - Increased RBC count → one distinguishing factor between thalassemias and other microcytic anemias

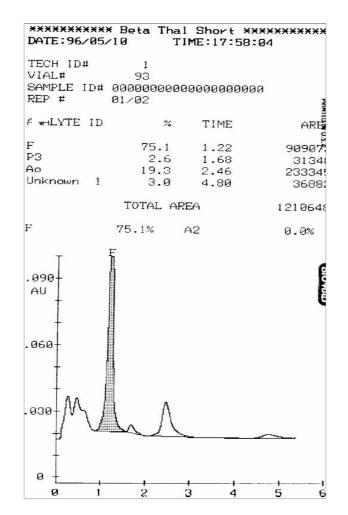
Distinguishing Features Between Iron Deficiency and Thalassemia


- The RBC count in thalassemia is either normal or on higher side of normal
- MCV usually less than 70 in
- The RDW is usually in the normal range

- Low RBC count
- MCV usually more than 70
- RDW is usually more than 17

Diagnosis of Thalassemias

High-Pressure Liquid Chromatography


- Cation Exchange
- Analytical cartridge contains negatively charged silica
- Buffers contain Na+ and K+ ions
- Hemolysates contain positively charged hemoglobin
- Hemoglobin binds to negatively charged silica at injection
- Na+ and K+ concentration increased and separates hemoglobin fragments from silica

Normal Patient Chromatograms

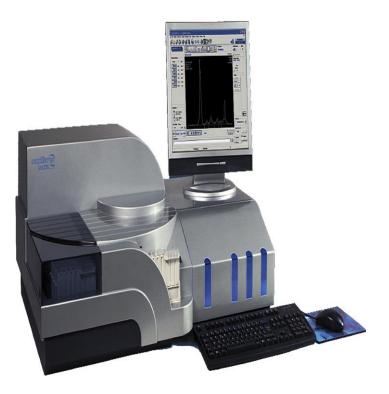
******Beta Thal Short*****				
DATE:08/15/95 TIME:17:28:54				
TECH ID# VIAL#	2 11 Sf	MPLE ID#	000000010	
ANALYTE ID	%	TIME	AREA	
F P2 P3 Ao A2 S-WINDOW	1.2 5.0 4.1 85.8 2.9 1.2	1.09 1.30 1.73 2.37 3.53 4.73	22966 98779 81235 1708029 57396 22962	
	TOTAL A	REA	1991367	
F	1.2%	A2	2.9%	
30%				
10%		A2		
B hand	$\frac{1}{2}$			

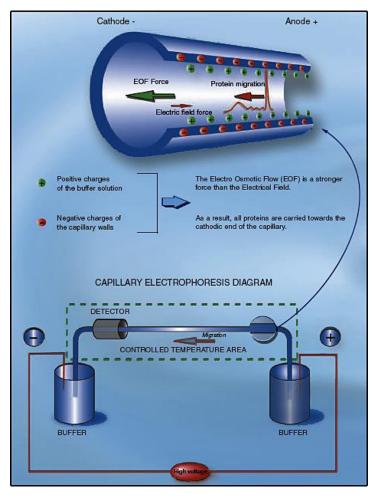
Summary of HPLC

Advantages

Fast

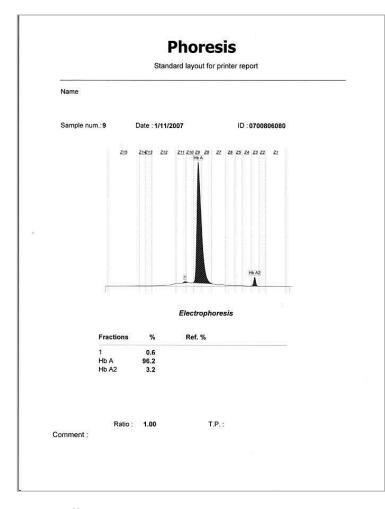
AR P_{LABORATORIES}

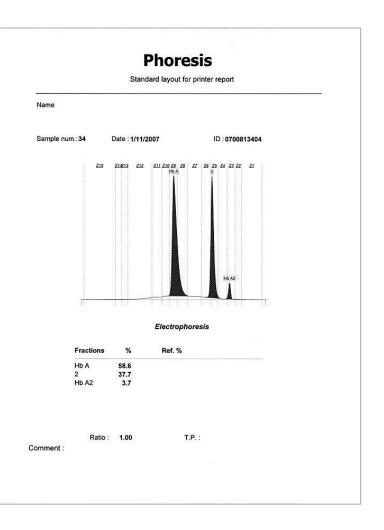

- Small amounts of sample
- Accurate quantitation of A2


Disadvantages

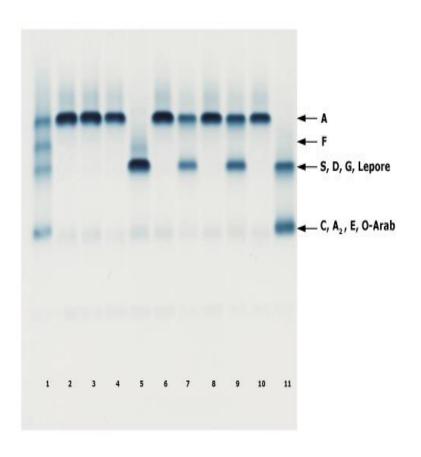
- Hemoglobin E cannot be separated from A2
- Hemoglobin H and Barts elute
 too quickly from column

Capillary Electrophoresis




http://www.sebia-usa.com

Phoresis Reports



http://www.sebia-usa.com

Alkaline and Acid Gel Electrophoresis

- Electrophoresis (pH 8.4 (alkaline) and pH 6.2 (acid) on agarose gels)
- Slow, labor-intensive, and inaccurate in the quantification of lowconcentration Hb variants (e.g., Hb A₂) or in the detection of fast Hb variants (Hb H, Hb Barts)
- The precision and accuracy of Hb A₂ measurements using densitometric scanning of electrophoretic gels is poor, especially when compared with HPLC techniques

Isoelectric Focusing

- IEF is an electrophoretic technique with excellent resolution
- IEF is an equilibrium process in which Hb migrates in a pH gradient to a position of 0 net charge
- The Hb migration order of IEF is the same as that of alkaline electrophoresis with better resolution

Molecular Analysis

- Alpha thalassemia
 - Multiplex ligation dependent probe amplification (MLPA) and multiplex PCR
 - Alpha globin sequencing
- Beta thalassemia
 - Beta globin sequencing
 - The test examines the complete beta globin coding sequence, the splice sites and other intronic regions known to harbor mutations, the proximal promoter region, and the 5' and 3'UTR regions.
 - Clinical sensitivity is up to 97% based on the ethnicity
 - Beta globin del/dup testing by MLPA

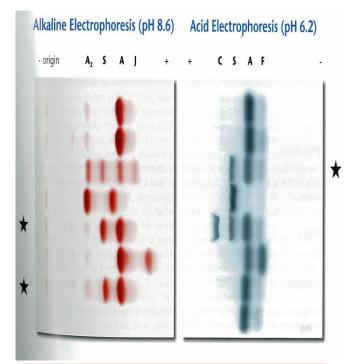
α–Thalassemia Diagnosis

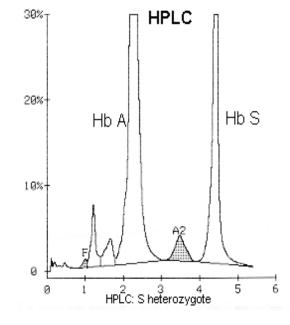
- Hb gel/HPLC migration patterns
 - Not helpful for α–Thalassemia, unless β4 (Hb H) and γ4 (Hb Barts) are present
- Genetic analysis
 - MLPA: will identify all deletions and duplications
 - Multiplex PCR for 7 common deletions-only 7 common deletion
 - Alpha globin sequencing
 - PCR amplification followed by bidirectional sequencing of the complete protein coding sequence with exon/intron boundaries, proximal promoter region, 5' and 3' untranslated regions, and polyadenylation signal
 - Only useful in 5-10% of cases where alpha thal is due to point mutation

β–Thalassemia Diagnosis

- **<u>HPLC</u>**: Elevated HB A2 diagnostic
- <u>Molecular analysis</u>: Complete beta globin coding sequence, the splice sites and other intronic regions known to harbor mutations, the proximal promoter region, and the 5' and 3'UTR regions
- Clinical sensitivity is up to 97% based on the ethnicity
- Beta globin del/dup in some cases (about 5%) where beta thalassemia is due to large deletions

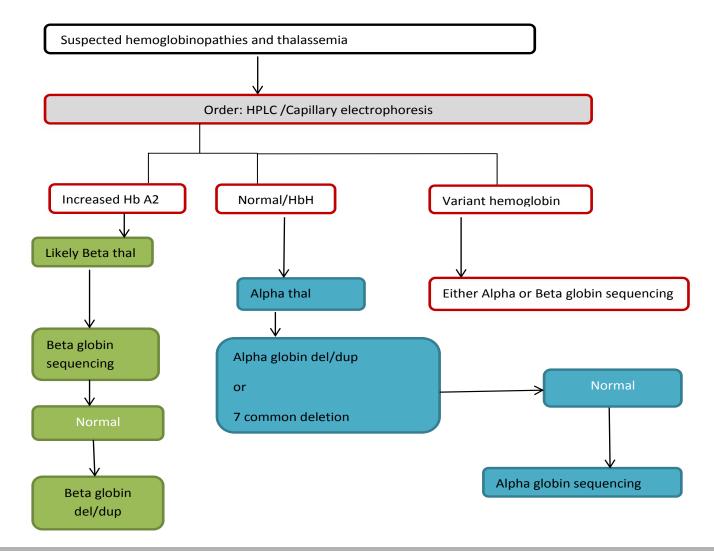
Sickle Cell Disease Diagnosis


- Sickledex test (Screening test)
 - Deoxygenated Hb-S is insoluble in a concentrated phosphate buffer solution and forms a turbid suspension
 - Normal Hemoglobin A and other hemoglobins remain in solution
 - It does not differentiate between Sickle Cell
 Disease (S/S) and Sickle Cell Trait (A/S)



Sickle Cell Disease Diagnosis

Electrophoresis


Color Altas of Hemoglobin Disorders: A compendium Based on Proficiency Testing (2003), updated in 2010

HPLC

Simplified Algorithm

References and Acknowledgement

- Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Prchal J, Seligsohn U. Willam's Hematology. Ninth Edition. McGraw Hill Professional. 2015.
- Steinberg MH, Forget BG, Higgs DR, Nagel RL. Disorders of Hemoglobin. Genetics, Pathophysiology, and Clinical Management, 2nd ed. Cambridge University Press, New York, 2009
- Color Altas of Hemoglobin Disorders: A compendium Based on Proficiency Testing (2003), updated in 2010
- <u>Acknowledgement:</u>
 - Josef T. Prchal, M.D, Professor of Medicine, Genetics and Pathology. University of Utah and ARUP Laboratories
 - Dottie Hussie, M.T, ARUP Laboratories

P.A.C.E.®/FL Password: HT62816

Go to <u>www. aruplab.com/hemoglobinopathies</u> and click on the P.A.C.E.[®]/FL Credit Redemption Link Credit redemption for this webinar will be available through

July 12, 2016

This webinar can be viewed after August 1, 2016 at <u>www.arup.utah.edu</u> where CME/SAM, P.A.C.E.[®] and Florida continuing education credit will be available.

Department of Pathology

© 2014 ARUP Laboratories

ARUP IS A NONPROFIT ENTERPRISE OF THE UNIVERSITY OF UTAH AND ITS DEPARTMENT OF PATHOLOGY.